Amalgamating inverse semigroups over ample semigroups

Nasir Sohail

Institute of Mathematics and Statistics University of Tartu, Estonia

PART 1

It was shown by Howie that a semigroup amalgam $\mathcal{A} = (S; T_1, T_2)$ fails to embed (strongly) if T_1 and T_2 are groups but S is not such. Generalizing this result, Rahkema and Sohail showed that \mathcal{A} is also non-embeddable when T_1 and T_2 are completely regular (Clifford) semigroups but S is not completely regular (Clifford). In this talk we shall consider the situation where T_1 and T_2 are inverse semigroups whereas S is a non-inverse ample semigroup. Let \mathcal{C} be a class of semigroups and $T_1 \in \mathcal{C}$. We call $(S; T_1)$ an *antiamalgamation pair* for \mathcal{C} if $(S; T_1, T_2)$ is non-embeddable in any semigroup for all $T_2 \in \mathcal{C}$. The following results will be presented.

Theorem 1. Let S be a non-inverse ample subsemigroup of an inverse semigroup T_1 . Then (S, T_1) is an antiamalgamation pair for the class of inverse semigroups.

Theorem 2. Let a non-inverse semigroup S be made into a right (respectively, left) ample semigroup by an inverse oversemigroup T_1 (respectively, T_2). Then $(S; T_1, T_2)$ is not embeddable.

A subsemigroup S of an inverse semigroup T is called rich right ample (in T) if for all $x, y \in S$ one has $x^{-1}y \in S \cup S'$, where $S' = \{x^{-1} \in T : x \in S\}$. A rich left ample subsemigroup is defined dually. We call S rich ample if it is both rich right and rich left ample. We shall also present the following results, concerning weak amalgamation.

Theorem 3. Let T_1 and T_2 be inverse semigroups containing rich ample isomorphic copies of a non-inverse semigroup S. Then $(S; T_1, T_2)$ is weakly embeddable in an inverse semigroup.

Corollary 1. Let G_1 and G_2 be groups containing rich ample isomorphic copies of a semigroup S, which is not a group. Then $(S; G_1, G_2)$ is weakly embeddable in a group.

PART 2

If the time permits, then I shall present a quick review of my work on amalgamation of partially ordered semigroups.